Фмн это биохимия

Фмн это биохимия

Витамин В2 (рибофлавин) впервые был выделен из молока и ряда других пищевых продуктов. В зависимости от источника получения витамин В2 называли по-разному, хотя по существу это было одно и то же соединение: лактофлавин (из молока), гепатофлавин (из печени), овофлавин (из белка яиц), вердофлавин (из растений). Химический синтез витамина В2 был осуществлен в 1935 г. Р. Куном. Растворы витамина В2 имеют оранжево-желтую окраску и характеризуются желто-зеленой флюоресценцией.

В основе молекулы рибофлавина лежит гетероциклическое соединение изоаллоксазин (сочетание бензольного, пиразинового и пиримидинового колец), к которому в положении 9 присоединен пятиатомный спирт рибитол. Химическое название «рибофлавин» отражает наличие рибитола и желтой окраски препарата , рациональное название его 6,7-диметил-9-D-рибитилизоаллоксазин.

Рибофлавин хорошо растворим в воде, устойчив в кислых растворах, но легко разрушается в нейтральных и щелочных растворах. Он весьма чувствителен к видимому и УФ-излучению и сравнительно легко подвергается обратимому восстановлению, присоединяя водород по месту двойных связей и превращаясь в бесцветную лейкоформу. Это свойство рибофлавина легко окисляться и восстанавливаться лежит в основе его биологического действия в клеточном метаболизме.

Клинические проявления недостаточности рибофлавина лучше всего изучены на экспериментальных животных. Помимо остановки роста, выпадения волос (алопеция), характерных для большинства авитаминозов, специфичными для авитаминоза В2 являются воспалительные процессы слизистой оболочки языка (глоссит), губ, особенно у углов рта, эпителия кожи и др. Наиболее характерны кератиты, воспалительные процессы и усиленная васкуляризация роговой оболочки, катаракта (помутнение хрусталика). При авитаминозе В2 у людей развиваются общая мышечная слабость и слабость сердечной мышцы.

Согласно данным К. Яги, существует прямая связь между степенью недостаточности рибофлавина у животных и накоплением в крови продуктов перекисного окисления липидов (ПОЛ), развитием атеросклероза и катаракты. Эти нарушения, по мнению автора, указывают на важную роль флавопротеинов в молекулярных механизмах синтеза и распада продуктов ПОЛ.

Биологическая роль. Рибофлавин входит в состав флавиновых коферментов, в частности ФМН и ФАД , являющихся в свою очередь просте-тическими группами ферментов ряда других сложных белков – флаво-протеинов. Некоторые флавопротеины в дополнение к ФМН или ФАД содержат еще прочно связанные неорганические ионы, в частности железо или молибден, наделенные способностью катализировать транспорт электронов. Различают 2 типа химических реакций, катализируемых этими ферментами. К первому относятся реакции, в которых фермент осуществляет прямое окисление с участием кислорода, т.е. дегидрирование (отщепление электронов и протонов) исходного субстрата или промежуточного метаболита. К ферментам этой группы относятся оксидазы L- и D-аминокислот, глициноксидаза, альдегидоксидаза, ксантиноксидаза и др. Вторая группа реакций, катализируемых флавопротеинами, характеризуется переносом электронов и протонов не от исходного субстрата, а от восстановленных пиридиновых коферментов. Ферменты этой группы играют главную роль в биологическом окислении. В каталитическом цикле изоаллоксазиновый остаток ФАД или ФМН подвергается обратимому восстановлению с присоединением электронов и атомов водорода к N 1 и N 10 . ФМН и ФАД прочно связываются с белковым компонентом, иногда даже ковалентно, как, например, в молекуле сукцинатдегидрогеназы.

ФМН синтезируется в организме животных из свободного рибофлавина и АТФ при участии специфического фермента рибофлавинкиназы:

Образование ФАД в тканях также протекает при участии специфического АТФ-зависимого фермента ФМН-аденилилтрансферазы. Исходным веществом для синтеза является ФМН:

Читайте также:  Отчего растет живот у мужчин

Распространение в природе и суточная потребность. Рибофлавин достаточно широко распространен в природе. Он содержится почти во всех животных тканях и растениях; сравнительно высокие концентрации его обнаружены в дрожжах. Из пищевых продуктов рибофлавином богаты хлеб (из муки грубого помола), семена злаков, яйца, молоко, мясо, свежие овощи и др.; в молоке он содержится в свободном состоянии, а в печени и почках животных прочно связан с белками в составе ФАД и ФМН. Из организма человека и животных рибофлавин выделяется с мочой в свободном виде. Суточная потребность взрослого человека в рибофлавине составляет 1,7 мг, в пожилом возрасте и при тяжелой физической работе эта потребность возрастает.

По своей химической природе флавинмононуклеотид (ФМН) является мононуклеотидом, а флавинадениндинуклеотид (ФАД) – динуклеотидом (состоит из АМФ + ФМН). ФАД (ФМН) содержит витамин В2 (рибофлавин).

Ферменты, содержащие в своем составе ФАД, называются флавиновыми или флавопротеидными. В клетках находится около 60 флавопротеидов. Флавиновые ферменты – аэробные дегидрогеназы, относятся к оксидоредуктазам.

Биологическая роль флавиновых ферментов заключается в том, что они катализируют аэробные окислительно-восстановительные реакции в живых системах, например, окисляют восстановительные коферменты – НАД Н2, НАДФ Н2, несущие Н2 в дыхательной цепи.

К тиоловым коферментам относится кофермент ацилирования (КоА, СоА, НSСоА), биологическая роль которого заключается в переносе ацильных группировок. Если КоА переносит ацетил (СН3СО–), то он называется коферментом ацетилирования. В состав КоА входит ви­тамин В3 (пантотеновая кислота):

Ацильные группы переносятся КоА за счет сложноэфирной связи кофермента А с тиоловой группой –SН.

Биологическая роль кофермента ацетилирования заключается в том, что он является:

1) ключевым веществом промежуточного метаболизма, переносчиком групп СН3СО–, которые вступают в цикл Кребса для окис­ления до Н2О и СО2 и генерации энергии;

2) коферментом, участвующим в биосинтезе и распаде жирных кислот до аминокислот.

РАЗДЕЛ 4. ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ФЕРМЕНТОВ

Ферменты – это высокомолекулярные соединения, амфотерные электролиты, характерными свойствами которых являются:

— свойства коллоидных систем;

— высокая специфичность действия;

— активация и ингибирование ферментов.

Влияние температуры на активность ферментов

Ддя ферментативных реакций справедливо правило Вант-Гоффа: с повышением температуры на 10 °С скорость реакции возрастает в 2–4 раза:

,

где Vt2 – скорость при температуре t2; Vt1– скорость при температуре t1; Δt= t2 – t1; γ = 2–4 – температурный коэффициент.

Данная зависимость сохраняется до определенного температур­ного уровня – температурного оптимума. Для большинства фермен­тов температурный оптимум находится в диапазоне 35. 45 °С. Повы­шение температуры выше оптимума приводит к снижению активности фермента, при t > 70 °С фермент инактивируется, т. е. теряет биоло­гическую активность. Так как фермент является белком, то при по­вышении температуры происходит его денатурация, меняется струк­тура активного центра, в результате фермент не может реагировать с субстратом. Исключением являются миокиназа, которая проявляет активность при 100 °С, и каталаза, активная при 0 °С.

Ферменты проявляют максимальную активность при оптималь­ном физиологическом диапазоне рН (см. приложение). Например, оптимум рН для сахаразы – 6,2, для пепсина – 1,5–2,5.

Некоторые ферменты могут катализировать прямую и обрат­ную реакции.

Специфичность (избирательность) действия

Фермент может катализировать одну или несколько близких по природе химических реакций. В основе специфичности лежит гипоте­за Э. Фишера: строгое соответствие структуры субстрата и активного центра, как ключ к замку.

Читайте также:  Избыточный вес женщины

Специфичность может быть относительной и абсолютной. Относительная специфичность характерна для ферментов, дей­ствующих на определенный тип связи. К ферментам с относительной специфичностью относятся эстеразы (гидролиз по местоположению эфир­ных связей) и протеиназы (гидролиз пептидной связи).

Абсолютная специфичность (абсолютная избирательность) заключается в том, что фермент катализирует превращение только одного субстрата конкретной структуры.

К абсолютной специфичности относится и стереохимическая специ­фичность, т. е. воздействие фермента на определенный стереоизомер.

Активация фермента. Активаторы. Ингибирование. Ингибиторы

Активацией называется увеличение активности ферментов, ак­тиваторами – вещества, повышающие активность ферментов.

Активатор H + Н + Cl — Желчные кислоты Трипсин, энтерокиназа Фермент Пепсин Гастриксин Амилаза Липаза Протеолитические ферменты Тонкого кишечника

Активаторами могут быть ионы металлов (Na + , К + , Мg 2+ ).

Одним из видов процесса активации является процесс самоак­тивации ферментов. Ферменты имеют проферменты (зимогены) –неактивные формы ферментов, когда активный центр замаскирован дополнительным участком пептидной цепи, в результате чего суб­страт не может подойти к активному центру. Превращение зимогена в активный фермент в результате удаления участка пептидной цепи и освобождения активного центра называется самоактивацией.

Профермент Пепсиноген Трипсиноген Химотрипсиноген Проэластаза Фермент Пепсин Трипсин Химотрипсин Эластаза

Понижение скорости ферментативной реакции под воздействием ингибиторов называется ингибированием, соответственно ингибиторы –это вещества, которые угнетают действие ферментов. Ингибиторами яв­ляются ионы тяжелых металлов, кислоты, щелочи, спирты и др.

Ингибирование может быть как обратимым, так и необратимым.

При необратимом ингибировании фермент теряет свою актив­ность полностью в связи с разрушением структуры (денатурацией). К ингибиторам относятся денатурирующие физические и химические факторы.

Обратимое ингибирование – это обратимое взаимодействие фер­мента с субстратом. Обратимое ингибирование может быть конку­рентным и неконкурентным.

При конкурентном обратимом ингибировании происходит "кон­куренция" между субстратом и ингибитором за взаимодействие с активным центром фермента.

Субстрат и ингибиторы – структурные аналоги. Ингибитор (У), конкурируя с субстратом (S), образует с ферментом (Е) ингибиторно-ферментный комплекс (ЕУ):

Неконкурентное, или аллостерическое (от греч. allos – другой), Ингибирование основано на том, что ингибитор не является структур­ным аналогом субстрата и соединяется не с активным, а с аллостерическим центром, в результате чего происходит изменение структуры фермента, и активный центр не может присоединить субстрат.

Важную роль в регуляции действия ферментов играет их компартментация, т. е. локализация в субклеточных структурах.

Метаболизм

В кишечнике рибофлавин освобождается из состава пищевых ФМН и ФАД, и диффундирует в кровь. В слизистой кишечника и других тканях вновь образуется ФМН и ФАД.

Биохимические функции

Кофермент оксидоредуктаз – обеспечивает перенос 2 атомов водорода в окислительно-восстановительных реакциях.

1. Дегидрогеназы энергетического обмена – пируватдегидрогеназа (окисление пировиноградной кислоты), α- кетоглутаратдегидрогеназа и сукцинатдегидрогеназа (цикл трикарбоновых кислот), ацил-КоА-дегидрогеназа (окисление жирных кислот), митохондриальная α-глицеролфосфатдегидрогеназа (челночная система).

2. Оксидазы, окисляющие субстраты с участием молекулярного кислорода.

Гиповитаминоз

Причина

Пищевая недостаточность, хранение пищевых продуктов на свету, фототерапия, алкоголизм и нарушения ЖКТ.

Клиническая картина

В первую очередь страдают высокоаэробные ткани – эпителий кожи и слизистых. Проявляется как сухостьротовой полости, губ и роговицы; хейлоз, т.е. трещины в уголках рта и на губах ("заеды"), глоссит(фуксиновый язык), шелушение кожи в районе носогубного треугольника, мошонки, ушей и шеи, конъюнктивитиблефарит.

Читайте также:  Боди комбат что это

Сухость конъюнктивы и ее воспаление ведут к компенсаторному увеличению кровотока в этой зоне и улучшению снабжения ее кислородом, что проявляется как васкуляризация роговицы.

Антивитамины В2

1. Акрихин (атебрин) – ингибирует функцию рибофлавина у простейших. Используется при лечении малярии, кожного лейшманиоза, трихомониаза, гельминтозов (лямблиоз, тениидоз).

2. Мегафен – тормозит образование ФАД в нервной ткани, используется как седативное средство.

3. Токсофлавин – конкурентный ингибитор флавиновых дегидрогеназ.

Лекарственные формы

Свободный рибофлавин, ФМН и ФАД (коферментные формы).

Витамин В3 (PP, ниацин, антипеллагрический)

Название витамина PP дано от итальянского выражения preventive pellagra – предотвращающий пеллагру.

Источники

Хорошим источником являются печень, мясо, рыба, бобовые, гречка, черный хлеб, в молоке и яйцах витамина мало. Также синтезируется в организме из триптофана – одна из 60 молекул триптофана превращается в витамин.

Можно считать, что 60 мг триптофана равноценны примерно 1 мг никотинамида. Если принять, что физиологическая норма потребления триптофана составляет 1 г, то в организме образуется около 17 мг никотинамида в сутки.

Строение

Витамин существует в виде никотиновой кислоты или никотинамида.

Две формы витамина РР

Его коферментными формами являются никотинамидадениндинуклеотид (НАД) и фосфорилированная по рибозе форма – никотинамидадениндинуклеотидфосфат (НАДФ).

Строение окисленных форм НАД и НАДФ

Биохимические функции

Перенос гидрид-ионов Н – (атом водорода и электрон) в окислительно-восстановительных реакциях

Благодаря переносу гидрид-иона витамин обеспечивает следующие задачи:

1. Метаболизм белков, жиров и углеводов. Так как НАД и НАДФ служат коферментами большинства дегидрогеназ, то они участвуют в реакциях

· при синтезе и окислении жирных кислот,

· при синтезе холестерола,

· обмена глутаминовой кислоты и других аминокислот,

· обмена углеводов: пентозофосфатный путь, гликолиз,

· окислительного декарбоксилирования пировиноградной кислоты,

· цикла трикарбоновых кислот.

2. НАДН выполняет регулирующуюфункцию, поскольку является ингибитором некоторых реакций окисления, например, в цикле трикарбоновых кислот.

3. Защита наследственной информации – НАД является субстратом поли-АДФ-рибозилирования в процессе сшивки хромосомных разрывов и репарации ДНК, что замедляет некробиоз и апоптоз клеток.

4. Защита от свободных радикалов – НАДФН является необходимым компонентом антиоксидантной системы клетки.

5. НАДФН участвует в реакциях ресинтеза тетрагидрофолиевой кислоты из дигидрофолиевой, например после синтеза тимидилмонофосфата.

Гиповитаминоз

Причина

Пищевая недостаточность ниацина и триптофана. Синдром Хартнупа.

Клиническая картина

Проявляется заболеванием пеллагра (итал.: pelle agra – шершавая кожа). Проявляется как синдром трех Д:

· деменция(нервные и психические расстройства, слабоумие),

· дерматиты(фотодерматиты),

· диарея(слабость, расстройство пищеварения, потеря аппетита).

При отсутствии лечения заболевание кончается летально. У детей при гиповитаминозе наблюдается замедление роста, похудание, анемия.

Антивитамины

Фтивазид, тубазид, ниазид – лекарства, используемые для лечения туберкулеза.

Лекарственные формы

Никотинамид и никотиновая кислота.

Витамин В5 (пантотеновая кислота)

Источники

Любые пищевые продукты, особенно бобовые, дрожжи, животные продукты.

Суточная потребность

Строение

Витамин существует только в виде пантотеновой кислоты, в ее составе находится β-аланин и пантоевая кислота (2,4-дигидрокси-3,3-диметилмасляная).

Ссылка на основную публикацию
Фитнес занятия для мам с детьми
Полноценное развитие малыша невозможно без достаточного количества движений. В физическое воспитание детей раннего возраста входит: обучение правильной ходьбе, развитие чувства...
Физические упражнения для шеи
Наша шея - очень уязвимая и важная часть нашего тела. Она связывает головной мозг и тело, через неё проходят все...
Физические упражнения кегеля
Одна из трех современных женщин страдает от деликатных проблем, связанных с ослабевшими мышцами тазового дна. Отсюда - недержание мочи при...
Фитнес занятия для пожилых
Многие считают, что пожилой возраст и физическая активность – несовместимые понятия, ведь пожилым людям сложно заниматься спортом из-за хронических болезней...
Adblock detector