Ультразвук в медицине лечение

Ультразвук в медицине лечение

УЗТ, или ультразвуковая терапия, – это методика лечения при помощи ультразвука. УЗТ используют в физиотерапии для лечения и профилактики различных заболеваний. Методику применяют в разных областях медицины, таких как ортопедия, хирургия, гинекология, офтальмология, дерматология, отоларингология, стоматология, педиатрия. Ультразвуковая терапия позволяет снизить частоту обострений, а также сократить время восстановления после операции, острых патологий.

Исторические сведения

Ультразвуковые волны были открыты в 1899 году, их обнаружил К. Konig. Использовать на практике ультразвук пробовал русский инженер К. В. Шиловский и французский изобретатель Ланжевен в 1914-1918 годах. Исследования этих ученых привели к созданию излучателя ультразвука. Он работал на основе пьезоэлектрического эффекта в соответствии с разработкой братьев Кюри. После этого был сделан прибор на основе магнитострикции. Со временем лучи, исходящие из аппарата, стали более направленными на конкретный объект. Это позволило применять ультразвуковые волны в промышленности и медицине.

В медицине начали применять ультразвук после 1927 года. Толчком к использованию УЗТ стала работа ученых о биологическом воздействии ультразвука на организм. Есть мнение, что первым ультразвук начал применять Р. Польман. Он создал вибратор, излучающий ультразвуковые волны. Польман лечил УЗ-волнами ишиас, невралгию, миалгию. Результаты лечения были положительные.

К 1945 году УЗТ стали использовать в Германии, Западной Европе, США, Японии. В нашей стране методику начали применять только 1953 году. Ученый В. А. Плотников впервые попробовал лечить контрактуру Дюпюитрена ультразвуком. В 1955 году УЗ-волны стали использовать в терапии неврологических, суставных патологий, кожных болезней.

Начиная с 1961 года, начали производить отечественные ультразвуковые приборы. Производство их было серийным, что послужило толчком для развития ультразвуковой терапии. В 1986 году ученым из Белоруссии (Л. И. Богданович, В. С. Улащик, А. А. Чиркин) была присуждена премия в области науки и техники. Методики ультразвуковой терапии в физиотерапии сегодня применяются очень широко для лечения различных заболеваний.

Характеристики ультразвуковых волн

Для физиотерапевтических процедур применяются УЗ-волны с частотой 800-3000 кГЦ. Для хирургических манипуляций частота колебаний составляет 20-100 кГЦ. Дозировка ультразвукового воздействия на организм зависит от интенсивности, продолжительности воздействия, а также типа генерации УЗ-волн (непрерывные, импульсные).

  • Низкая (не более 0,4 Вт/см2).
  • Средняя (0,5-0,8 Вт/см2).
  • Высокая (0,9-1 Вт/см2).

При непрерывном воздействии ультразвука УЗ-волны без остановки направляются на ткани. Импульсное воздействие на органы представляет собой прерывающийся поток волн продолжительностью 2,4 или 10 мс.

Степень поглощения ультразвуковых волн зависит от акустики и частоты колебаний. Если ткани мягкие, то поглощение будет происходить на глубине 4-5 см при частоте 800-900 кГц, на глубине 1,5-2 см при частоте 3000 кГц.

Поглощение тканей по отношению к крови:

  • жировая − в 4 раза эффективнее;
  • мышечная − в 10 раз лучше;
  • костная – в 75 раз интенсивнее.

На месте перехода различных видов тканей интенсивность поглощения УЗ-волн значительно выше. В воздухе они сразу поглощаются, поэтому для проведения ультразвуковых физиопроцедур применяют различные среды.

Механизм воздействия УЗ-излучения

Выделяют несколько механизмов воздействия ультразвука на организм. К ним относятся: механический, тепловой, физико-химический, нервно-рефлекторный. Они являются первичными механизмами ультразвуковой терапии.

Механическое воздействие заключается в высокочастотных колебаниях, которые передаются тканям.

При этом происходит очень мелкая, незаметная человеку вибрация. Вибрационное воздействие приводит к увеличению кровообращения, повышению метаболизма в клетках.

Под действием вибрации в клетке снижается вязкость цитоплазматической жидкости. В тканях начинает разрыхляться соединительная ткань. В клетках ускоряется диффузия микроэлементов, стимулируется работа лизосом. Из лизосом начинают выходить ферменты, которые повышают функцию белковых соединений. Эти процессы способствуют ускорению обмена веществ. При подаче волн высокой частоты увеличивается проницаемость гистогематических барьеров.

Тепловой эффект подразумевает переход энергии УЗ-волн после поглощения тканями в тепло. Температура в них увеличивается на 1°С. При этом ускоряется ферментативная активность внутри тканей, стимулируются биохимические реакции. Тепло образуется только на границах разных по плотности тканей. Тепловую энергию больше поглощают органы с дефицитом кровотока, насыщенные коллагеновыми волокнами, а также нервная, костная ткань.

Физико-химическое воздействие вызвано механическим резонансом. Он увеличивает скорость движения молекулярных структур, повышается процесс распада молекул на ионы, появляются новые электрические поля. Ускоряется окисление липидов, улучшается работа митохондриальных структур клеток, стимулируются физические и химические процессы в тканях организма. Активируются биологически активные вещества, такие как гистамин, серотонин. Под действием УЗ-волн улучшается дыхание и окисление в органах. Все эти процессы ускоряют восстановление тканей.

Выделяют следующие фазы реакции организма:

Фаза Характеристики
Фаза непосредственного воздействия Стимулируются все виды воздействия: механическое, физико-химическое, тепловое.
Фаза преобладания стресс-индуцирующей системы Продолжается на протяжении 4 часов после действия на ткани УЗ-волн.
Активация ПОЛ Стимулируется синтез различных гормонов, биологически активных веществ. Повышается потоотделение, увеличивается образование мочи, уменьшается рН кожи, увеличивается сокращение стенок пищеварительного тракта. Активируется фагоцитоз, повышается иммунитет.
Фаза преобладания стресс-лимитирующей системы Действует на протяжении 4-12 часов. Уменьшается секреция кортизола, адренокортикотропного гормона, ускоряются метаболические и восстановительные процессы в органах.
Фаза усиления компенсаторно-приспособительных процессов Длительность составляет 12-24 часа. Увеличивается работа митохондриальных структур, стимулируется дыхательная функция клеток и тканей, пентозно-фосфатный обмен, повышается процесс деления клеточных структур, улучшается лимфоотток от органов, ускоряется приток крови.
Поздний следовой период Продолжительность до 3 месяцев. Ускоряются все обменные процессы.

Терапевтический эффект УЗ-волн

УЗ-волны являются специфическим раздражителем при действии их на органы и ткани. Если воздействие ультразвука направлено на кожу, то формируется воспалительная реакция, покраснение кожи, увеличивается обмен веществ. Во время ультразвуковой терапии (УЗТ) повышается количество тучных клеток, стимулируется функция камбиальных (стволовых) клеточных структур, повышается концентрация мукополисахаридов. На фоне терапии в коже увеличивается функция железистого аппарата (сальные потовые железы), реакция кожи на раздражители становится более яркой.

Ткани нервной системы очень чувствительны к воздействию УЗ-волн. Ультразвук тормозит работу рецепторов синаптических щелей, что способствует снижению скорости передачи нервных импульсов. Улучшается общее состояние у пациентов с нарушениями вегетативной нервной системы.

Если УЗ-волны действуют на области желез, это ведет к стимуляции синтеза гормонов. Повышается иммунная активность.

При воздействии на сердечно-сосудистую систему ультразвук способен усиливать кровоток, немного понижать артериальное давление, повышать частоту сердечного ритма. Реологические свойства крови становятся лучше, повышается функция эритроцитов и лейкоцитов.

Показания и ограничения к назначению УЗТ

Процедура УЗТ имеет свои показания и ограничения.

Показания Ограничения
ЛОР-болезни (наличие аденоидов, ангины, фарингиты в стадии восстановления и другие болезни).

Терапия рубцовых изменений в послеоперационном периоде.

Патологии нервной системы.

Болезни суставного аппарата.

Энурез у ребенка.

Остеохондроз поясничной области.

Поясничные радикулопатии, грыжи поясничного отдела.

Артриты, артрозы (ревматоидные, а также с деформацией сустава).

Невралгия тройничного нерва.

Читайте также:  Как правильно написать тренируемся

Патологии глаз (катаракта, поражения роговицы, заболевания сетчатки).

Рубцы после ожоговой травмы.

Язвы при венозной недостаточности.

Переломы костей (трубчатых).

Снижение функции яичников, бесплодие.

Болезни матки, труб, яичников, спаечные образования малого таза.

Гнойное отделяемое или абсцесс.

Печеночная и почечная колика.

Сахарный диабет (поздняя стадия).

Атеросклеротическое поражение сосудов.

Туберкулезное поражение легочной ткани.

Злокачественный опухолевый процесс.

Инфекционные болезни любой этиологии.

Период вынашивания плода.

Нарушение свертывающей способности крови.

Невропатия лицевого нерва, невралгии.

Во время применения ультразвукового метода лечения не следует направлять излучатель на область сердца, мозг, точки роста костей у детей.

Техника проведения и аппараты УЗТ

При проведении ультразвукового физиолечения необходимо устранить гнойные очаги инфекции. Это можно сделать при помощи лекарственных препаратов и дезинфицирующих растворов. Также следует пролечить инфекционные заболевания вирусной или бактериальной природы.

Алгоритм физиопроцедуры следующий. Перед началом терапии кожу в месте контакта с аппаратной головкой излучателя необходимо смазать специальным веществом (вазелином, ланолином). Включают прибор, настраивают интенсивность волн, выставляют время. После этого излучатель устанавливают в необходимой области на поверхности кожи и начинают водить со скоростью 1 см в секунду.

На начальном этапе лечения можно обрабатывать не больше 1-2 полей за 1 сеанс. После двух дней лечения можно облучать до 3-4 полей. Продолжительность процедуры в первые двое суток не должна превышать 5 минут. Длительность последующих сеансов составляет до 15 минут. Детям процедуру рекомендуется проводить не более 10 минут.

При обработке ультразвуком конечностей (стопы, кисти, суставы, предплечье, голень) процедуру проводят в воде. Больной опускает руку или ногу в ванну, туда же погружают излучатель. Температурный режим для воды составляет 32-36°С. Длительность физиопроцедуры до 15 минут.

Во время терапии необходимо обеспечить безопасность медицинского персонала. Медсестра, которая держит в воде излучатель, должна надеть шерстяную рукавицу, а сверху на нее резиновую перчатку. Это защищает руку медработника от воздействия на руку ультразвукового воздействия. Варежка из шерсти имеет в порах воздух, который полностью поглощает УЗ-волны.

Виды аппаратов, используемые в учреждениях:

  • Для физиотерапии — УЗТ-1.01Ф.
  • В стоматологии — УЗТ-1.02С.
  • Для урологии — УЗТ-1.03У.
  • При болезнях глаз — УЗТ-1.04О.
  • Для женщин — УЗТ-3.01-Г.
  • В дерматологии — УЗТ-3.02-Д.
  • Для ребенка (облучение кожи) — УЗТ-3. 06.
  • Общего назначения — УЗТ-3. 05.

Сегодня производятся также следующие аппараты: «Гамма», «Барвинок», «Стержень», «Проктон-1», «Генитон», «ЛОР-3», «Sonostat», «Sonopuls», «ЕСО», «ECOSCAN». Для проведения ультразвуковой терапии дома можно приобрести ультразвуковой аппарат в магазинах медтехники. Для домашнего применения прекрасно подходит прибор «Ретон».

Перед тем как использовать ультразвуковой прибор нужно обязательно обратиться к доктору. Врач проведет полное обследование. Это очень важно, так как ультразвуковая терапия разрешена не всем пациентам.

Ультразвук у детей

Ультразвуковая терапия детям назначается только с 7-летнего возраста. В более раннем возрасте применять методику не следует. Терапию используют по тем же показаниям, что и для взрослых.

Подросткам-девочкам УЗТ применяют для лечения нарушения менструального цикла. Пациентам младшего возраста ультразвук показан при аденоидите и других ЛОР-патологиях. Ультразвуковое лечение детям также необходимо при энурезе. УЗ-волны улучшают состояние ткани мочевого пузыря, что помогает сформировать нормальный рефлекс на мочеиспускание, снизить реактивность мочевого пузыря.

Заключение

Ультразвуковая терапия – это относительно безопасный метод лечения. Его используют при различных заболеваниях. Применять методику лечения ультразвуком разрешено больницам, а также санаторно-курортным учреждениям. Для проведения УЗ-терапии обязательно нужно обратиться к доктору. Он определит длительность сеансов, интенсивность воздействия ультразвуковых волн, продолжительность курса.

Сегодня сложно представить медицинскую диагностику без такого метода, как ультразвуковое исследование. Появившись в середине прошлого века, УЗИ-сканеры произвели настоящую революцию в медицине. Ультразвуковая диагностика продолжает активно развиваться. На смену обычной двухмерной картинке приходят новые технологии. Недавно первый отечественный УЗИ-сканер экспертного класса производства «Калугаприбор» концерна «Автоматика» представил холдинг «Швабе», отвечающий за маркетинговую стратегию и продажи этого оборудования.

О том, что такое ультразвук, как появились УЗИ-сканеры и о новейшей технологии 5D в ультразвуковом исследовании – в нашем материале.

На ультразвуковой волне

Многие помнят определение звука из школьного учебника по физике: «Звуковыми волнами или просто звуком принято называть волны, воспринимаемые человеческим ухом». Таким образом, диапазон звуковых волн лежит в пределах от 20 Гц до 20 кГц. Звуки именно такой частоты способен слышать человек. Волны с частотой менее 20 Гц называются инфразвуком, а с частотой выше 20 кГц – ультразвуком.

В то время как человеку инфразвук и ультразвук недоступны, многие живые существа вполне нормально общаются в этих частотах. Например, слон различает звук частотой от 1 Гц, а в верхнем пределе слышимости лидируют дельфины – максимум слухового восприятия у них доходит до 150 кГц. Кстати, ультразвук вполне способны уловить собаки и кошки. Собака может слышать звук до 70 кГц, а верхний порог звукового диапазона у кошек равен 30 Гц.

Если для некоторых животных ультразвук – обычный способ общения, то людям о наличии в природе «невидимых» звуковых волн лишь приходилось догадываться. Опыты в этой сфере проводил еще Леонардо да Винчи в XV веке. Но открыл ультразвук в 1794 году итальянец Ладзаро Спалланцани, доказав, что летучая мышь с заткнутыми ушами перестает ориентироваться в пространстве.

УЗИ: физические основы

В XIX веке ультразвук произвел настоящий бум в научной среде, стали проводиться первые научные опыты. Например, в 1822 году, погрузив в Женевское озеро подводный колокол, удалось вычислить скорость звука в воде, что предопределило рождение гидроакустики.

Ближе к концу века, в 1890 году, учеными Пьером и Жаком Кюри было открыто физическое явление, которое вошло в основу ультразвукового исследования. Братья Кюри обнаружили пьезоэлектрический эффект. Заключается он в том, что при механической деформации некоторых кристаллов между их поверхностями возникает электрическое напряжение.


Пьер Кюри и кварцевый пьезоэлектрометр

На основе таких пьезокерамических материалов и создается главный компонент любого УЗИ-оборудования – преобразователь, или датчик, ультразвука. На пьезоэлементы подается ток, который преобразуется в механические колебания с излучением ультразвуковых волн. Пучок ультразвуковых волн распространяется в тканях организма, часть его отражается и возвращается обратно к пьезоэлементу. Основываясь на времени прохождения волны, оценивается расстояние.

Ультразвук в медицине: от лечения артрита до диагностики

В медицине ультразвук вначале использовали как метод лечения артритов, язвенной болезни желудка, астмы. Было это в начале 30-х годов прошлого века. Считалось, что ультразвук обладает противовоспалительным, анальгезирующим, спазмолитическим действием, также усиливает проницаемость кожи. Кстати, сегодня на этом основан фонофорез – метод физиотерапии, когда вместо обычного геля для УЗИ наносится лечебное вещество, а ультразвук помогает препарату глубже проникать в ткани.

Читайте также:  Крем маска для век

Но свое основное применение в области медицины ультразвук нашел как метод диагностики. Основателем УЗИ-диагностики считается австрийский невролог, психиатр Дьюссик. В 1947 году он рассмотрел опухоль мозга, учитывая интенсивность, с которой ультразвуковая волна проходила сквозь череп пациента.

Настоящий прорыв в развитии ультразвуковой диагностики произошел в 1949 году, когда в США был создан первый аппарат для медицинского сканирования. Это устройство мало чем напоминало современные УЗИ-сканеры. Оно представляло собой резервуар с жидкостью, в которую помещался пациент, вынужденный долгое время сидеть неподвижно, пока вокруг него передвигался сканер брюшной полости – сомаскоп. Но начало было положено. УЗИ-сканеры совершенствовались очень стремительно, и к середине 60-х годов они стали приобретать привычный вид с мануальными датчиками.

Благодаря развитию микропроцессорной технологии в течение 1980-1990-х годов качество УЗИ намного улучшилось. В это время ультразвуковую диагностику стали активно применять в различных областях медицины, оценив ее безвредность по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией. Особо широкое применение ультразвук нашел в акушерстве и гинекологии. Уже в конце 1990-х годов во многих странах УЗИ стало стандартным исследованием, с помощью которого определяли срок беременности, выявляли пороки развития плода.

Взгляд изнутри: современные технологии в УЗИ

Сегодня отечественное здравоохранение закупает у зарубежных поставщиков порядка 3 тысяч УЗИ-сканеров в год. Дело в том, что до последнего времени такие устройства не выпускались серийно в России.

Эксперименты по применению ультразвука проводились и у нас в стране. В 1954 году в институте акустики Академии наук СССР даже появилось специализированное отделение, а в 1960-е годы был налажен выпуск отечественных УЗИ-сканеров. Но все они так и остались в статусе экспериментальных, не получили массового применения на практике, а к 1990-м годам и вовсе были замещены импортными аналогами.

В прошлом году Ростех в рамках программы импортозамещения наладил серийное производство российских УЗИ-сканеров – «РуСкан 50» и «РуСкан 60» на мощностях «Калугаприбор», входящего в концерн «Автоматика». Они относятся к среднему и высокому классу, в них применяются новейшие технологии, такие как 3D/4D-изображение, а также эластография, то есть УЗИ с применением дополнительного фактора – давления, помогающего по характеру сокращения тканей определять патологические изменения.

Методы ультразвуковой диагностики продолжают активно развиваться. В этом году к производственной линейке Ростех добавил аппараты экспертного класса. Госкорпорация представила новинку на форуме БИОТЕХМЕД – «РуСкан 65М» в рамках экспозиции холдинга «Швабе», который реализует маркетинговую стратегию и осуществляет продажи изделия. Это первый отечественный УЗИ-сканер экспертного класса.

Что означает определение «экспертный» в классификации УЗИ-сканеров? Основной критерий – это разрешающая способность. Здесь используются высокоплотные датчики, способные различать мельчайшие детали структур. Как упоминалось выше, каждый преобразователь имеет определенный набор пьезоэлементов. В аппаратах недорогого класса плотность этих элементов невысока. Чем больше плотность, тем более точной и достоверной будет диагностика.

Второй, не менее важный критерий – какой набор программ заложен в данном оборудовании. Для того чтобы обеспечивать высокий уровень исследования, как правило, применяют очень дорогие пакеты программного обеспечения. Это позволяет визуализировать наиболее тонкие детали, изменения структур органов, сосудов и тканей. Кстати, в «РуСкан 65М» программное обеспечение – российского производства.

В новом изделии не только улучшено качество получаемого изображения, но и внедрены автоматизированные методы его обработки и анализа. Так, визуальную оценку плода осуществляет программа реконструкции полупрозрачного 3D УЗИ Crystal Vue, которая за счет усиления визуализации одновременно наружных и внутренних структур в одном реконструированном трехмерном изображении позволяет увеличить информативность и диагностическую достоверность исследования за счет повышения контрастности и подсветки внутренних структур дополняет объемное изображение морфологической информацией об объекте исследования, повышая точность диагностики. Среди других технологий новинки – программа автоматического анализа образований молочной железы S-Detect Breast. Еще одна функция изделия – фантастическая 5D Heart Color, которая реконструирует девять проекций сердца плода с одновременным отображением кровотока. Полученные данные позволяют наиболее детально оценить сердце на предмет врожденных патологий.

Таким образом, в течение нескольких десятилетий применение УЗИ в медицине претерпело огромные изменения, особенно в акушерстве: от простого измерения размеров плода до детальной оценки его кровотока и внутренних органов. То, что было технически невозможно еще совсем недавно, сегодня превращается в привычную составляющую рутинного ультразвукового исследования.

Ультразвук представляет собой упругие механически колебания плотной физической среды с частотой более 20 кГц, т. е. в сверхзвуковом акустическом диапазоне частот, которые распространяются в виде продольных волн и приводят к последовательному сжатию и растяжению среды. В терапевтической практике используют ультразвук в диапазоне частот 800-3000 кГц.

Для глубины проникновения ультразвука в ткани организма имеет значение частота ультразвуковых колебаний и зависящая от нее длина волны. Чем больше частота колебаний, тем меньше глубина проникновения. При частоте 1600-2600 кГц ультразвук проникает на глубину 1 см, а при частоте 800-900 кГц — на 4-5 см. Кроме того, играет роль скорость распространения ультразвука в тканях, которая зависит от плотности среды и величины акустического сопротивления. Так, в жидких средах скорость распространения ультразвуковых волн составляет 1500 м/с, в твердых -4000 м/с. Поэтому в неоднородных средах, какими являются ткани организма, распространение ультразвука происходит неравномерно. Максимум поглощения ультразвуковой энергии наблюдается в костной ткани, на границах разных тканей, а также на внутренних мембранах клеток.

Ультразвуковые волны плохо отражаются воздухом, поэтому в лечебной практике воздействие ультразвуком проводят через контактную безвоздушную среду — вазелиновое масло, глицерин, воду и т. д.

Режим воздействия ультразвуковой энергией может быть непрерывным и импульсным. В непрерывном режиме ультразвук в виде единого потока направляют в ткани. В импульсном режиме посыл энергии чередуется с паузами. Время подачи ультразвуковой энергии и паузы могут быть различными. При длительности импульса 2 мс пауза продолжается 18 мс, а при импульсе в 4 мс — 16 мс. Чем меньше продолжительность импульса, тем менее эффективно действие ультразвука.

Рис. 1. Ультразвуковая волна (сгущение и разрежение частиц вещества).

Для получения ультразвуковых колебаний в физиотерапевтических аппаратах используют обратный пьезоэлектрический эффект, т. е. физическое явление, которое может развиваться в некоторых кристаллах (кварц, ти-танат бария и др.). При воздействии на такие кристаллы (пьезоэлементы) переменным током высокой частоты происходит их последовательное сжатие и расширение, что лежит в основе развития колебаний, соответствующих частоте подаваемого тока (рис. 1).

Ультразвук оказывает на организм механическое, физико-химическое и слабое тепловое действие.

Читайте также:  Пол на холодном балконе

Механическое действие ультразвука, обусловленное переменным акустическим давлением, вызывает микровибрацию, своеобразный «микромассаж» тканей, что приводит к изменению функционального состояния клеток: повышается проницаемость клеточных мембран, усиливаются процессы диффузии и осмоса, изменяются кислотно-щелочное равновесие, пространственное взаимоотношение субмикроскопических структур в клетке. Термическое действие ультразвука связано, с одной стороны, с переходом механической энергии в тепловую, а с другой — интенсификацией биохимических процессов. Эндогенное тепло, образующееся в тканях, распространяется неравномерно, оно больше проявляется в плотных тканях и пограничных слоях. Повышение температуры в тканях способствует расширению кровеносных и лимфатических сосудов, изменению микроциркуляции. В результате этого активируются тканевые обменные процессы, проявляется противовоспалительное и рассасывающее действие ультразвука.

Рис. 2. Пьезоэлектрический эффект (схема).

Физико-химическое действие ультразвука связано с пространственной перестройкой внутриклеточных молекулярных комплексов. Повышается активность ряда ферментов, интенсивность тканевых окислительно-восстановительных процессов, увеличивается митотическая активность клеток, в тканях происходит образование биологически активных веществ — гепарина, гистамина, серотонина и др.

Механизм терапевтического действия ультразвука многообразен. Он складывается из местных и общих реакций, реализуемых нейрорефлекторным и гуморальным путями. Эти реакции развиваются пофазно и отличаются длительным последействием.

При правильной дозировке ультразвук оказывает болеутоляющее, рассасывающее, противовоспалительное, спазмолитическое, фибринолитическое действие. Под его воздействием ускоряются регенеративные и репаративные процессы, повышается возбудимость нервно-мышечного аппарата, усиливается проводимость импульсов по периферическому нервному волокну, активируется передача нервных импульсов в симпатических ганглиях, улучшается трофическая функция тканей.

Диапазон влияния ультразвука на организм человека весьма широк, что определяет возможности его использования в лечении различных заболеваний.

Одним из современных методов лечебного использования ультразвука является ультрафонофорез (фонофорез) лекарственных веществ. Он является физико-фармакологическим методом сочетанного воздействия на организм ультразвука и лекарственных веществ. Для проведения фонофореза вместо обычных онтактных сред (вазелин, ланолин, глицерин) используют лекарственные смеси, представляющие собой водные растворы, мази, эмульсии, содержащие различные лекарственные средства.

Наибольшее распространение в практике получили. фонофорез гидрокортизона, анальгина, эуфиллина и др. Повышение проницаемости кожи, сосудов, клеточных мембран, механическое разрыхление соединительной ткани под действием ультразвука имеет важное значение для проникновения лекарственных веществ.

Ультразвук усиливает чрескожный транспорт лекарственных препаратов, которые депонируются в коже, откуда медленно поступают в кровь, а затем к органам и тканям.

Показаниями для ультразвуковой терапии являются заболевания опорно-двигательного аппарата (артриты, артрозы, ревматоидный артрит), травмы и заболевания периферической нервной системы, а также заболевания органов пищеварения (язвенная болезнь желудка и двенадцатиперстной кишки), глаз (конъюнктивит, кератиты), ЛОР-органов (тонзиллиты, фарингиты), урологические (простатиты), гинекологические (сальпингоофориты), стоматологические (пародонтоз) и некоторые болезни кожи.

К числу частных противопоказаний для ультразвуковой терапии относятся ишемическая болезнь сердца с явлениями стенокардии и аритмии, гипертоническая бо­лезнь II-III стадии, тромбофлебит, не рекомендуют назначение этой процедуры детям до 3-5 лет, а также воздействие ультразвуком на чувствительные ростковые зоны костей у детей.

Эффективность применения ультразвука зависит от его интенсивности, области воздействия и продолжительности процедуры. Интенсивность ультразвуковых колебаний — количество ультразвуковой энергии (в ваттах), проходящее через 1 см площади излучателя аппарата в течение 1 с (Вт/см2). Применяемую в физиотерапевтической практике интенсивность ультразвуковых колебаний условно подразделяют на малую (0,05-0,4 Вт/см2), среднюю (0,6-0,8 Вт/см2) и высокую (1,0-1,2 Вт/см2).

Ультразвуковые волны малой интенсивности обычно используют для воздействия на область головы и симпатические ганглии, большой интенсивности — на конечности. Не рекомендуется воздействовать на выступающие костные поверхности и области, имеющие очень тонкий слой мягких тканей. Ультразвуковому воздействию подвергают отдельные участки (поля), при этом площадь дного поля не должна превышать 150-250 см2. Продолжительность воздействия на одно поле составляет в среднем 5-10 мин, на несколько полей — не более 5 мин. Длительность всей процедуры не должна превышать 15 мин. Процедуры назначают ежедневно или через день. Курс лечения 8-10 процедур.

Ознакомившись с назначением врача-физиотерапевта, медицинская сестра начинает подготовку больного к процедуре. Последовательность ее действий показана на схеме 1. По ее указанию больной принимает позу в зависимости от зоны воздействия, причем так, чтобы ему было удобно. Следует предупредить больного, что во время роцедуры он будет ощущать приятное тепло. Появление сильного жжения или боли может свидетельствовать о нарушении правил проведения процедуры, чрезмерной интенсивности или плохой переносимости ультразвука. Медицинская сестра должна сообщить об этом врачу-физиотерапевту для коррекции назначения.

Ультразвуковую терапию чаще осуществляют контактным способом, т. е. воздействие проводят непосредственно на кожу, предварительно смазанную вазелиновым маслом, ланолином или глицерином (рис. 1). При большой неровности поверхности, для лучшего обеспечения контакта с излучателем можно использовать воду, налитую в аянсовые или фарфоровые ванночки. Температура воды должна быть в пределах 32-36°С, предварительно ее необходимо дегазировать кипячением. В воду погружают участки тела больного, подлежащие воздействию, и ультразвуковой излучатель, который должен находиться на расстоянии 1-2см от поверхности кожи (рис. 2).

В офтальмологии для помещения контактных сред (масла, воды) применяют специальные глазные ванночки.

Перед включением аппарата в сеть один из ультразвуковых излучателей подсоединяют к кабелю и включают его в гнездо на панели аппарата. Затем вилку вставляют в сетевую розетку, нажимают клавишу включения в сеть, при этом должна загореться зеленая сигнальная лампочка. Далее нажатием соответствующих клавиш устанавливают указанный в назначении врача режим работы, номер излучателя и указанную интенсивность ультразвука. Затем поворотом ручки процедурных часов вправо до упора устанавливают назначенное время процедуры, при этом загорается индикаторная лампочка высокого напря­жения.

СХЕМА 1. ОРИЕНТИРОВОЧНАЯ ОСНОВА ДЕЙСТВИЙ МЕДИЦИНСКОЙ СЕСТРЫ ПРИ ПРОВЕДЕНИИ УЛЬТРАЗВУКОВОЙ ТЕРАПИИ (УЛЬТРАФОНОФОРЕЗА)

После включения аппарата медицинская сестра должна проверить его работу, так как пьезоэлемент, помещенный в основании ультразвукового излучателя, со временем изнашивается и выходная мощность ультразвуковой энергии изменяется. Проверку следует проводить 1 раз в день Существуют два способа проверки излучателя (рис. 1). При первом способе проверки излучатель помещают в стакан с водой. Если аппарат работает в непрерывном режиме с интенсивностью 0,4-0,6 Вт/см2, то в воде должны появиться пузырьки воздуха, оседающие на поверхности излучателя. При втором способе проверки на рабочую поверхность излучателя наносят несколько капель воды или вазелинового масла. Если аппарат исправен, то после его включения наблюдается подпрыгивание, «кипение» этих капель. Для проверки выходной мощности ультразвуковой энергии применяют также специальный прибор ИМУ-3 (измеритель мощности ультразвукового излучения). Проверку при помощи этого прибора осуществляет техник 1 раз в месяц.

Процедуру в соответствии с назначением можно проводить по лабильной или стабильной методике. При лабильной методике ультразвуковой излучатель переме­щают по поверхности тела больного медленными круговыми и спиралеобразными движениями со скоростью 1- 1,5 см/с.

Рис. 1. Контактное воздействие ультразвуком. а, б, — области воздействия.

Ссылка на основную публикацию
Удар головой об пол что делать
В повседневности часто происходят различные травмы, какие-то легче, какие-то тяжелее. Если же произошел ушиб головы, всё может оказаться гораздо серьезней,...
Тяга штанги в наклоне борисов
Тяга штанги в наклоне – это базовое упражнение для развития спины, в частности ее толщины. Что придает ей изящный и...
Тяга штанги к груди техника
Широкие мускулистые плечи - это не природный дар, а результат грамотной работы над развитием дельтовидных мышц. Эти мышцы состоят из...
Удар молнии в воду
цифровая электроника вычислительная техника встраиваемые системы Что будет если молния ударит в воду Общеизвестно, что вы не должны использовать электроприборы,...
Adblock detector